

Trusted Edge Platform for

IoT Platforms

User Guide

August 2021

Intel Confidential

Document Number:

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products

described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which

includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel

product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate

from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725

or by visiting:

http://www.intel.com/design/literature.htm

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service

activation. Learn more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by

Intel Corporation is under license.

Copyright © 2020, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm
http://www.intel.com/

Trusted VM User Guide Page 3

 Document Number:

Intel Confidential

Contents

Contents .. 3

Revision History .. 5

References .. 5

Definitions and Acronyms .. 6

1 Introduction .. 7

1.1 Document Description .. 7

1.2 Build Trusted OS as standalone image .. 7

1.2.1 Clone Trusted OS meta-layers ... 8

1.2.2 Build Trusted OS Image for target ... 8

1.3 Build Trusted OS with ACRN hypervisor as reference unified build 9

1.3.1 Clone acrn and Trusted OS meta-layers for unified build. 9

1.3.2 Build ACRN unified image with Trusted OS for target. 10

1.4 Build SELinux based yocto host for container: ... 11

1.4.1 clone meta layers: ... 11

1.4.2 Build SELinux yocto based bare metal host OS for docker containers: 11

2 Platform Configuration .. 13

2.1 Secure Boot configuration ... 13

2.1.1 Secure Boot Steps for booting the grub binary, acrn.bin and kernel images

of pre-launch VM and Service OS VM ... 13

2.2 TPM configuration .. 15

2.3 TME configuration .. 16

3 Device Provisioning ... 18

3.1 TPM Device Provisioning ... 18

3.2 Trusted VM/Container provisioning for user config. 19

3.2.1 Creating user configuration signing and encryption. 19
3.2.1.1 Encryption and signing of user config data at host machine. .. 19

3.2.1.2 Authentication and decryption of user config data at target

machine have trusted OS. ... 22

3.3 LUKS configuration. .. 23

3.4 TrustAgent configuration. .. 25

3.4.1 Attestation components .. 25

3.4.2 TEP Trustagent .. 25

4 Attestation Admin Tasks ... 28

4.1 Intel-Secl Control Plane .. 28

4.2 TEP Admin attestation infrastructure .. 29

4.2.1 Postman scripts ... 29

4.2.2 Admin Token ... 30

4.2.3 Flavor configuration ... 30

Trusted VM User Guide Page 4

 Document Number:

Intel Confidential

4.2.4 Host Registration ... 33

4.2.5 Report Creation ... 34

4.2.6 Trustagent Env Creation ... 34

5 Image Installations. .. 36

4.1 Bring-up Trusted VM as pre-launch VM on Target (ACRN-hybrid configuration): .. 36

4.1.1 Dependencies: .. 36

4.1.2 Installation and setup of TEP prelaunch VM: .. 37

4.2 Bare metal host installation on target and configuring TEP docker container: 37

4.2.1 Pre-Requisites: .. 37

4.2.2 Installation and setup of TEP container: ... 38

6 API Interface and Sample applications 40

6.1 PKCS11 Client and Daemon ... 40

6.2 Features supported in this release .. 40

6.3 On Trusted VM side .. 42

6.4 On Guest-OS side .. 43

6.4.1 Running PKCS11 apps on Guest OS: .. 44
6.4.1.1 Running the apps: .. 44

7 Intel Recommendations .. 46

8 Open Limitations ... 47

Trusted VM User Guide Page 5

 Document Number:

Intel Confidential

Revision History

Date Revision Reference # Description

August 2020 0.1 First draft

October 2020 0.2 Changes for PV

Jan-2021 0.3 Updated for PV2.0 release

May-2021 0.4 Updated for PV2.1 release

Augist-2021 0.5 Updated for PV2.2 release

References

Reference Modules/Owner Description

1 ACRN https://projectacrn.org/

2 Yocto https://www.yoctoproject.org/

3 ECS http://wheeljack.ch.intel.com/ECS-

Documentation/index.html

4 TPM2_PKCS11

Stack

https://github.com/tpm2-software/tpm2-pkcs11

5 TPM2 TSS Stack https://tpm2-software.github.io/

6 PKCS#11 Spec http://docs.oasis-open.org/pkcs11/pkcs11-

base/v2.40/csprd02/pkcs11-base-v2.40-csprd02.html

7 P11 kit https://p11-glue.github.io/p11-glue/p11-kit/manual/

8 Intel-isecl https://github.com/intel-secl/intel-secl

https://projectacrn.org/
https://www.yoctoproject.org/
http://wheeljack.ch.intel.com/ECS-Documentation/index.html
http://wheeljack.ch.intel.com/ECS-Documentation/index.html
https://github.com/tpm2-software/tpm2-pkcs11
https://tpm2-software.github.io/
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/csprd02/pkcs11-base-v2.40-csprd02.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/csprd02/pkcs11-base-v2.40-csprd02.html
https://p11-glue.github.io/p11-glue/p11-kit/manual/
https://github.com/intel-secl/intel-secl

Trusted VM User Guide Page 6

 Document Number:

Intel Confidential

Definitions and Acronyms

 Term Description

TPM Trusted Platform Module

BSP Boards Support Package

HAL Hardware Abstraction Layer

RPC Remote procedure Call

PKCS11 Public-Key Cryptography Standards

AES Advance Encryption standard

RSA Rivest Shamir Adelman

OS Operating system

VM Virtual machine

eRPC Embedded RPC

ECC Elliptical Curve Cryptography

Sftp Secure file transfer protocol

LUKS Linux Unified Key Setup

PCR Platform Configuration Register

TEP Trusted Edge Platform

TA Trust Agent

Trusted VM User Guide Page 7

 Document Number:

Intel Confidential

1 Introduction

1.1 Document Description

This document is intended to serve as an integration and user guide for the TEP

trusted VM and container configuration in IoTG projects. For an overview of the

Trusted VM and container configuration, please refer to the Trusted VM Quick

Start guide.

This document describes features supported for production release. This release

is tested on Tiger Lake rvp platform based on TGL-U and Yocto Linux based

guest-VM for hypervisor and SELinux enabled yocto host for container flavor.

This version of Trusted VM/container uses an Intel PTT as physical hardware

TPM as POR and limited testing done on dTPM. The intent is to provide an TPM

based release to customers for their development purpose.

1.2 Build Trusted OS as standalone image

Below are the instructions to build a Trusted OS as standalone or with acrn as a

unified build system. ACRN build is for reference integration example, end

customer may change it as per their requirements. For acrn build with trusted

OS we are referring meta-acrn from acrn opensource yocto layer in our sample

integrations. Packaging of this standalone image into acrn target need to be

done as part of acrn build. In next section we will explain how could unified build

be make with acrn and trusted os image. Building stand-alone trusted OS is still

important for development and component wise deployment.

Note: you may need to setup your build host for yocto build. You can follow

standard yocto guidelines . Following few common packages may need to be

installed in ubuntu. These build instructions are based on TGL yocto bkc.

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
build-essential chrpath socat cpio python3 python3-pip python3-pexpect xz-utils
debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev
pylint3 xterm

https://github.com/intel/meta-acrn/blob/master/docs/getting-started.md
https://www.yoctoproject.org/docs/2.0/ref-manual/ref-manual.html#required-packages-for-the-host-development-system

Trusted VM User Guide Page 8

 Document Number:

Intel Confidential

1.2.1 Clone Trusted OS meta-layers

1. Trusted OS standalone build instructions are here, these instructions are

assuming that you have access to the Intel Gitlab repositories.

2. Refer to the latest README from:

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-docs/-

/blob/tep_2.2_release/docs/BUILDING.md#trusted-os-standalone-build

Make a new directory.

$ mkdir <work_dir>

$ cd <work_dir>

Use repo to pull the repositories.

$ repo init -u

ssh://git@gitlab.devtools.intel.com:29418/OWR/IoTG/SMIE/Security/secure-

computing/meta-tep-manifests.git -b refs/heads/trusted-os_2.2 -g all

Pull meta-layers

$ repo sync -c -j$(nproc) --force-sync

1.2.2 Build Trusted OS Image for target

Once the cloning of the repositories is completed, use following instructions to

build trusted OS image.

Set up Build Environment

 $ sed -i 's/meta/meta-tep-trusted-os/g' ./openembedded-core/.templateconf

 $ source ./openembedded-core/oe-init-build-env

Copy multiconfig files from meta-tep-trusted-os layer

 $ mkdir -p conf/multiconfig/

 $ cp -r ../openembedded-core/meta-tep-trusted-os/conf/multiconfig conf/

Build image for tgl-u target

 $ bitbake mc:x86-tep-trusted-os-tgl-initramfs:core-image-trusted-os

Trusted-OS image:

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-docs/-/blob/tep_2.2_release/docs/BUILDING.md#trusted-os-standalone-build
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-docs/-/blob/tep_2.2_release/docs/BUILDING.md#trusted-os-standalone-build

Trusted VM User Guide Page 9

 Document Number:

Intel Confidential

build/tmp-x86-tep-trusted-os-tgl-initramfs-glibc/deploy/images/intel-corei7-
64/core-image-trusted-os-intel-corei7-64.wic

Trusted-OS Container Image:

build/tmp-x86-tep-trusted-os-tgl-initramfs-glibc/deploy/images/intel-corei7-
64/core-image-trusted-os-intel-corei7-64.tar.bz2

1.3 Build Trusted OS with ACRN hypervisor as

reference unified build

This is sample unified build approach using yocto multi-configuration where one
can build acrn hypervisor and trusted-os as one target image. Alternatively, you
can build trusted os as standalone and then deploy build image in acrn build

path to package it.

Note: Make sure that changes are done as per your requirements and common
yocto recipes are properly masked in respective multi-configuration files to avoid

applying changes in both SOS and Trusted-OS.

Following are some recommended configuration for pre-launched trusted VM in
ACRN hybrid_rt scenario config file. Refer xmls-2.3.tar.xz sample changes.

1. Disable the ivshmem which is enabled by default.

2. Increased the size of memory allocated to pre-launch VM.

"<size desc="The memory size in Bytes for the VM">0x80000000</size>"

3. Changed the boot arguments to ensure booting of TEP secure OS as pre-

launch VM.

4. Increased the number of vUARTS for interVM communication from 2 to 6.

5. Passthrough a USB storage device to pre-launch VM for storage.

6. Enable the TPM device passthrough to pre-launch VM by enabling mmio
passthrough.

1.3.1 Clone acrn and Trusted OS meta-layers for

unified build.

1. ACRN Unified build system with Trusted OS are given as follow, these

instructions are based on intel gitlab repositories.

2. Refer to the latest build guide from:

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-docs/-

/blob/tep_2.2_release/docs/BUILDING.md#acrn-unified-build

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-acrn/-/blob/master/recipes-core/acrn/files/xmls-2.3.tar.xz
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-docs/-/blob/tep_2.2_release/docs/BUILDING.md#acrn-unified-build
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-docs/-/blob/tep_2.2_release/docs/BUILDING.md#acrn-unified-build

Trusted VM User Guide Page 10

 Document Number:

Intel Confidential

Make a new directory.
$ mkdir <work_dir>

$ cd <work_dir>

Git clone the repo manifest.
 $ repo init -u

ssh://git@gitlab.devtools.intel.com:29418/OWR/IoTG/SMIE/Security/secure

-computing/meta-tep-manifests.git -b refs/heads/acrn_2.2 -g all

Pull meta-layers

 $ repo sync -c -j$(nproc) --force-sync

1.3.2 Build ACRN unified image with Trusted OS for

target.

Once the cloning of the repositories is completed, use following instructions to

build trusted OS image.

Set up Build Environment

$ sed -i 's/meta/meta-tep-acrn/g' ./openembedded-core/.templateconf

$ source ./openembedded-core/oe-init-build-env

$ mkdir -p conf/multiconfig/

$ cp -r ../openembedded-core/meta-tep-trusted-os/conf/multiconfig conf/

$ cp -r ../openembedded-core/meta-tep-acrn/conf/multiconfig conf/

Build the Image

$ bitbake mc:x86-tep-trusted-os-tgl-initramfs:core-image-trusted-os

Note: Following step is important if you don’t want to use any changes

from TEP into SOS and GuestVMs. Alternatively, you can use proper

BBMASKS.

$ bitbake-layers remove-layer meta-tep-trusted-os

$ bitbake mc:x86-tep-acrn-tgl:acrn-image-minimal

Final image will be located at:

 Trusted-OS Initramfs Image:

build/tmp-x86-tep-trusted-os-tgl-initramfs-glibc/deploy/images/intel-corei7-

64/bzImage-initramfs-intel-corei7-64.bin

 ACRN unified image with trusted-os:

Trusted VM User Guide Page 11

 Document Number:

Intel Confidential

build/tmp-x86-tep-acrn-tgl/deploy/images/intel-corei7-64/acrn-image-
minimal-intel-corei7-64.wic

1.4 Build SELinux based yocto host for container:

Below are the instructions to build a yocto based host with SELinux feature

enabled as bare metal host for TEP docker container. One can also use other

Linux based host for container (i.e Fedora, ubuntu, redhat, etc). we only

validated TEP container on yocto based docker enabled Linux host. This yocto

SELinux based build is for reference integration example, customer may change

it as per their requirements. For container host build we are referring meta-

selinux from yocto opensource layer in our sample integrations. We have TEP

specific SELinux rules and changes in intel specific meta-tep-container layer.

This host build system demonstrates SELinux container enablement in yocto

system.

1.4.1 clone meta layers:

Make a new directory

$ mkdir -p tep-docker

$ cd tep-docker

Clone the repo manifest for TEP 2.2 release.

$ “repo init -u

ssh://git@gitlab.devtools.intel.com:29418/OWR/IoTG/SMIE/Security/secure-

computing/meta-tep-manifests.git -b refs/heads/docker_2.2 -g all”

Pull the meta-layers

 $ repo sync -c -j$(nproc) --force-sync

1.4.2 Build SELinux yocto based bare metal host OS

for docker containers:

Use meta-tep-container bblayers.conf.sample and local.conf.sample

$ sed -i 's/meta/meta-tep-container/g' ./openembedded-core/.templateconf

$ source ./openembedded-core/oe-init-build-env

https://git.yoctoproject.org/git/meta-selinux
https://git.yoctoproject.org/git/meta-selinux
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-container

Trusted VM User Guide Page 12

 Document Number:

Intel Confidential

Copy multiconfig files from meta-tep-container and meta-tep-

trusted-os layer

$ mkdir -p conf/multiconfig/

$ cp -r ../openembedded-core/meta-tep-trusted-os/conf/multiconfig conf/

$ cp -r ../openembedded-core/meta-tep-container/conf/multiconfig conf/

Build the image with docker

$ bitbake mc:x86-tep-docker-selinux:core-image-selinux

SELinux enabled yocto image:

 <tep-docker>/build/tmp-x86-tep-docker-selinux-

glibc/deploy/images/intel-corei7-64/core-image-selinux-intel-corei7-64.wic

Trusted VM User Guide Page 13

 Document Number:

Intel Confidential

2 Platform Configuration

Platform with Trusted OS as recommends some configuration to achieve desired security

goals. Some of these configurations are described here. One shall make sure that these

changes are done at platform level to get system configurations right.

2.1 Secure Boot configuration

This section describes the secure booting of ACRN based Trusted Edge Platform (TEP)

solution with UEFI FW. The method uses GRUB to securely boot the ACRN and TEP

Secure OS. The flow diagram for secure boot have been mentioned below.

On booting the platform, UEFI verifies the GRUB.

GRUB verifies and launches the ACRN hypervisor, TEP Secure OS and Service VM.

We have followed the wiki https://projectacrn.github.io/latest/tutorials/acrn-secure-

boot-with-grub.html to implement the secure boot.

2.1.1 Secure Boot Steps for booting the grub

binary, acrn.bin and kernel images of pre-launch

VM and Service OS VM

Follow the ACRN wiki link to securely boot the TEP on ACRN.

https://projectacrn.github.io/latest/tutorials/acrn-secure-boot-with-grub.html

Along with following the above given wiki link one must perform few extra steps as

given below:

1. Enabling grub authentication with password is optional.

2. Creating of grub.init.cfg is a must even if grub authentication is being enabled or not.

3. While creating standalone grub efi binary using the script provided in ACRN wiki, we must

add an argument “--disable-shim-lock” in grub-mkstandalone functionality. This is

important, as not including this argument will lead to error while booting with grub2.06.

CSE UEFI Grub

ACRN

Service VM Kernel

TEP Secure OS Kernel

https://projectacrn.github.io/latest/tutorials/acrn-secure-boot-with-grub.html
https://projectacrn.github.io/latest/tutorials/acrn-secure-boot-with-grub.html
https://projectacrn.github.io/latest/tutorials/acrn-secure-boot-with-grub.html

Trusted VM User Guide Page 14

 Document Number:

Intel Confidential

grub-mkstandalone \

 --directory /usr/lib/grub/x86_64-efi \

 --format x86_64-efi \

--disable-shim-lock \

 --modules "$MODULES" \

 --pubkey /mnt/ngs/boot.key \

 --output ./bootx64.efi \

 "boot/grub/grub.cfg=/boot/grub.init.cfg" \

 "boot/grub/grub.cfg.sig=/boot/grub.init.cfg.sig"

4. While signing the grub.cfg, acrn.bin, sos kernel bzImage (as mentioned in the ACRN wiki)

one must also sign the following files:

a. gpg --homedir keys --detach-sign path/to/grub.init.cfg

b. gpg –homedir keys --detach-sign path/to/TEP Secure OS bzImage

c. gpg –homedir keys --detach-sign path/to/ACPI_VM0.bin

5. Enabling Secure boot in UEFI bios:

Note: Make sure that you have bootguard enabled BIOS in order to get HW root of trust

and chain of trust extended from FW/HW to OS.

a. Copy the db.auth(created as described in ACRN wiki) in a pendrive and connect it

to the target board.

b. Re-start the target board and enter the UEFI FW. Goto secure boot settings.

c. Select Secure Boot Mode and select Custom Mode.

d. Select Custom Secure Boot Options to enroll the db.auth key.

e. Select DB Options. Further select Enroll Signature.

f. Select Enroll Signature Using file. It lists the partitions.

g. Select the partition which contains db.auth key and select the db.auth file.

h. After selecting the db.auth file, select the setting Commit Changes and Exit.

Below figure shows the flow of deploying the db.auth key in BIOS.

Trusted VM User Guide Page 15

 Document Number:

Intel Confidential

6. Enable the secure boot setting and restart the system. Select the drive on which ACRN image is

flashed to securely boot.

2.2 TPM configuration

To use TPM as trusted execution environment in the platform which will act as hardware

root of trust for trusted os user configurations, disk encryption and measured boot, platform

shall have TPM enabled. following instructions are specific to Intel PTT enabled platform.

These steps will help to check if TPM is enabled in TGL-U platform.

Note: make sure that we have PTT enabled bios/fw image. One can verifies it using

following steps on TGL-U bios.

1. Go to bios menu->Intel Advanced Menu

2. TPM Configuration

Trusted VM User Guide Page 16

 Document Number:

Intel Confidential

Make sure that PTT is enabled.

2.3 TME configuration

Total Memory Encryption (TME) is used to protect DRAM data from physical attacks.

Such attacks include, moving DRAM module to another system, probing the DDR to

read the cycles, etc. System memory is encrypted by the TME block attached to the

memory controller. All cycles through TME block will be encrypted except for the

specific exclusion ranges as programed by BIOS.

This capability is typically enabled in the very early stages of the bios boot. Once

configured and locked, will encrypt all the data on external memory buses of an SoC

using the NIST standard AES-XTS algorithm with 128-bit keys or 256-bit keys depending

on the algorithm availability and selection. The encryption key used for TME uses a

hardware random number generator implemented in the Intel SoC, and the keys are not

accessible by software or using external interfaces to the Intel SoC.

For details refer to TME spec at,

https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-

key-total-memory-encryption-spec.pdf

https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf

Trusted VM User Guide Page 17

 Document Number:

Intel Confidential

To enable the TME capabilities in system,

1. Go to bios menu->Intel Advanced Menu

2. Select “CPU Configuration”

3. Select “Enabled” for Total Memory Encryption.

Note:

• “Total Memory Encryption” would be not be visible in menu options when the

processor doesn’t support this feature. This feature would be supported for

only VPro platforms. Also, this feature is not enabled in “FUSA” enabled

SKU’s.

• “Total Memory Encryption” option would be greyed out when “In Band ECC”

Trusted VM User Guide Page 18

 Document Number:

Intel Confidential

is enabled.

3 Device Provisioning

Trusted OS uses PTT as default TPM for root cryptographic keys and root of trust for OS

secure operations. TPM device on platform need to be provisioned with AES-256 user

key for confidentiality and ECC-384 public key for verification. These two keys shall be

provisioned in secure environment before device get ready for trusted OS. Following are

sample steps one can follow to provision these attributes into TPM.

Note: To support dTPM which may have lower strength cryptographic AES and ECC

algorithms, customer shall change encryption tool and provision those keys to get it

working. We done limited testing for Infineon dTPM with AES-128 and ECC-256 bits

only.

Pre-Requisite:

• Admin should choose between dTPM or PTT according to requirement as below as

supported by TPM.

1. Discrete TPM – AES-128 user key for confidentiality and ECC-256 public key

for verification.

2. PTT – AES-256 user key for confidentiality and ECC-384 public key for

verification.

• Admin machine requirement – Creation of signed PCR for LUKS needs TPM2

operation. Admin machine requires physical TPM or Virtual TPM for performing

admin steps.

3.1 TPM Device Provisioning

Refer this sample script for Linux platform sample_device_provisioning_script for Linux

commands for following operations. These sample operations will provide device key

creation and provisioning in TPM. Intel PTT is POR TPM device for our validation, but one

can use compatible dTPM as well. Only limited dTPM testing was done.

1. Generate a sample ECC key. this step can be done on host machine.

a. $: openssl ecparam -genkey -name secp384r1 -out
pcr_pol_signing_key_priv.pem

b. $: openssl ec -in pcr_pol_signing_key_priv.pem -out
pcr_pol_signing_key_pub.pem -pubout

2. Generate a 256 bit 'test' AES key or use one from the host system which you are

using for encryption in the above script. Make sure you change ‘key’ in the sample

host script accordingly.

a. $: tpm2_getrandom -o tep_config_data_aes_key.bin 32

Note: If setting up LUKS for a TEP platform with discrete TPM, use a 128-bit AES

key instead of 256 bits. Therefore, use '16' in above command.

Note: you can use different random number generator as well. i.e. /dev/urandom

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-user-config/files/tep_device_provision_sample.py

Trusted VM User Guide Page 19

 Document Number:

Intel Confidential

3. Use above keys (ECC public key and AES key) from step #1 and #2 and from

command-line (i.e Serial port) on TEP machine use

tep_device_provision_sample.py to perform device provisioning.

a. $: python3 tep_device_provision_sample.py -pol_pub_key
pcr_pol_signing_key_pub.pem -enc_key tep_config_data_aes_key.bin

Note : you may need to clear TPM before provisioning using command $: tpm2_clear

Note: you may need to remove tep_config_data_aes_key.bin from device and store a copy

of this key on admin machine for encryption. (Note: This is not secure. Preferably add

srm/shred to TEP and use that. (Future TODO)

Following NVIndexes are used for ECC public and AES symmetric keys.

oem_tep_policy_signing_key_nv_idx=0x018A0000

oem_tep_config_data_aes_key_handle=0x8100A000

3.2 Trusted VM/Container provisioning for user

config.

Once Device provision is performed one can proceed into Trusted VM provisioning steps.

This shall be the first step required when system first time boots with trusted OS and ready

for configuration. The pre-requisites for this step are to have device provisioned with user

keys.

3.2.1 Creating user configuration signing and

encryption.

Trusted VM will accept encrypted and signed user configuration data. Once data is

transfer to trusted VM, on next reboot tep_user_config daemon will look for a blob at

specific location and will verify it and then decrypt (verify-then-decrypt) using keys

stored in TPM. For verification we use ECDSA and for decrypt TEP will use AES CTR mode.

user config provisioning flow diagram show how the system works. Followings are steps

to be followed to create encrypted and signed user config data and then verify it on

system.

3.2.1.1 Encryption and signing of user config

data at host machine.

Following is one sample way to create user configuration.

1. Create user config data in file/files in required folder Hierarchy. Following is one

example.

Trusted VM User Guide Page 20

 Document Number:

Intel Confidential

 Figure 1: sample config files tree structure

2. Create a .tgz file of it. (this will reduce the size)

a. $: tar -cvzf update_config.tgz <update_config>

3. Encrypt and signed this .tgz file with given sample host tool. (tep_encrypt_signed

_user_config.py)

a. $: python3 tep_encrypt_signed _user_config.py <update_config.tgz>
<ecc_key> <aes_key>

Output - tep_user_config_data.bin

Note: make sure that you use correct keys (ECC and AES) refer section 3.1.

i. ECC private keys which is associated with the public key provisioned in

the device shall be used.

ii. Same Aes-256-bit keys shall be used which is provisioned in the

device.

b. Above will give you encrypted and signed blob which can be transferred to

target platform at ‘update’ users mount point which is unencrypted storage

partition (/home/update/upload/mnt/).

$: sftp -
o "IdentityFile=../sftp_key/update_user_key_for_dev.pem" update@t

ep-machine:upload/mnt/ <<< $'mput *'

NOTE: change permission of file update_user_key_for_dev.pem as below
– chmod 0444 update_user_key_for_dev.pem.

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-user-config/files/encrypt_sign_tool/tep_encrypt_singed_user_config.py
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-user-config/files/encrypt_sign_tool/tep_encrypt_singed_user_config.py

Trusted VM User Guide Page 21

 Document Number:

Intel Confidential

TPM2 Provisioned Platform.

HOST

Config start

Encrypt:
1. create config
2. encrypt with AES-
256-ctr
3. create encrypted
file (IV+cipher txt) ->
B1

Sign:
1. Calculate HASH
2. Sing hash with
ECC priv key-> B2
3. create compbined

Encrypted and
Signed Blobs (B1,

B2)

1. Added AES-ROT-Key
2. Added ECC-PUB-Key
3. Added counter value

Boot

Boot initramfs
tep_user_config_up
date

Check user
config

(daemon)
yes

Default Config
Scp user and

authorised keys

No
Ready for Trsuted-
VM provisioning

sftp

Reboot

1. Read ECC pub key from
TPM
2. HASH(B1)->B
2. Verify (B - B2

Verfiy

Decrypt B1 using
TPM
AES-256-ctr(B1)

yes

Process user config
parsing and setting

Provisioned

Hostname
Ssh config

Configuration
Data fileConfiguration

• Default scp user.

• Default host name
• default network config.
• sshd generate new keys

(ephemeral)
• accept trusted HOST into sshd

authorised_keys

• Default sftp user.

• Singed PCR policies.
• New host name
• new network config.
• sshd authorized keys (i.e OEM

specificl) new trsut-list
• Other additional settings.

Notes:
1. We shall make sure that there is no other service or daemon except
tep_user_config_update which is doing any processing for downloaded
data: this may be used as entry point for attack
2. Any default user setting which may cause possible unauthorized access
need to be closed.
3. For verification and decrypt steps, these shall be applied such a way that
there is no MIM attach as sftp will be available at that time. Make sure that
the sshd authorized_keys configuration is limited to use known host only.
4. Decrypted user config shall be copied at random location in ram with
some random transient file name, before parsing it. Once data parsed and
set into file system sensitive settings need to be deleted from decrypted
file.

No

Copy User
config data

Figure 2: user config provisioning

Trusted VM User Guide Page 22

 Document Number:

Intel Confidential

Figure 3: Signed Encrypted data format

3.2.1.2 Authentication and decryption of user

config data at target machine have trusted OS.

Trusted OS have tep_user_config_update.service which have sample implementation

to perform following operations in sequence.

1. Check /home/update/upload/mnt/tep_user_config_data.bin file at boot.

2. If this file exists, then this service will start verification process.

3. Parse and Authenticate tep_user_config_data.bin file for valid signature.

4. If authentication successful decryption will be followed in /opt/.

5. Apply decrypted user configuration on the system and restart appropriate system

services.

a. Note: the update of the respective config is end user dependent. We have

sample implementation here at verify_decrypt_service

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-user-config/files/tep_user_config_update.sh

Trusted VM User Guide Page 23

 Document Number:

Intel Confidential

3.3 LUKS configuration.

1. Retrieve TEP platform PCR values (TEP machine):

a. LUKS partition passphrase is sealed to TPM PCR's 0, 7 and 10. Value in these PCR

is a function of BIOS, GRUB, VMM and trusted-OS code. Follow below steps to

gather the PCR values:

b. Open Serial port on the TEP platform :
i. Boot to ACRN shell.

ii. vm_console 0

iii. Userid : root , Password : 123456*18

c. ON TEP : Retrieve PCR values

trusted-os: $: tpm2_pcrread -o pcr0_7_10.dat "sha256:0,7,10"

Note : Instead of SHA256, if SHA384 PCR bank is enabled on TEP machine, use

"sha384:0,7,10" in above command.

d. ON TEP : Copy PCR values to Admin machine

trusted-os: scp pcr0_7_10.dat admin@admin-machine:/path/to/policy/location

2. Generate TEP Luks Config Data file(Admin machine)

a. Use create_luks_pcr_policy.py to generate various ingredients needed for

LUKS passphrase setup.

i. Authorized PCR Policy : This is a digest of PCR policy which contains

info regarding the PCR signing public key and the PCR's included (i.e.

0, 7 and 10)

ii. Signed PCR Policy : This is a digest of current values of PCR 0, 7 and

10. And, this is signed using PCR Signing private key.

iii. $: python3 create_luks_pcr_policy.py -pol_pub_key
pcr_pol_signing_key_pub.pem -pol_priv_key

pcr_pol_signing_key_priv.pem -pcr_val_file pcr0_7_10.dat -

tpm_type ptt

Note: on above command type can be changed to “dtpm” instead of

“ptt” for discrete TPM.

b. Use create_luks_config.py to generate a YAML configuration file which will

store all relevant luks configuration data.

i. $: python3 create_luks_config.py -dev_part /dev/sda3 -
auth_pol authorized.policy -pol_file pcr0_7_10.pcr.policy -

pol_file_sign pcr0_7_10.pcr.signature -pcr_bank sha256

Note: -dev_part is configurable partition and -pcr_bank also can be

changed incased enabled in grub.

c. Copy luks_config_file.yaml (from above step) into

update_config/home/update/upload/mnt directory.

d. Follow section 3.2.1.1 step 3 for signed configuration.

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-disk-encryption/files/create_luks_pcr_policy.py
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-disk-encryption/files/create_luks_config.py

Trusted VM User Guide Page 24

 Document Number:

Intel Confidential

Trusted-os ships with a few scripts in the filesystem to aid in the initial setup of the

LUKS functionality. The following scripts exist in /opt/tep-luks/: tep_luks_module.py

a. Decryption of tep_user_config_update.bin will generate luks_config_update.yaml and

copy to /home/update/upload/mnt folder which will be used for tep_luks_module.py

execution.

b. ACRN systemd init service will invoke tep_luks_module.py to setup luks initialization and

in terms of container based luks - entrypoint.sh will take care of running

tep_luks_module.py to setup luks initialization.

c. tep_luks_module.py will read luks_config_file.yaml and encrypt partition first time.

d. In subsequent boots, systemd init(ACRN)or entrypoint.sh(Container) will invoke

tep_luks_module.py and do luks decryption to unseal luks passphrase and provide to dm

driver in kernel for decryption and integrity protection.

Note: Once luks partition is configured and mount one shall remove old sshd host keys

and regenerate new keys in mounted partition as below. This only need to be done at

first boot. After that these keys will remain persistent in luks drive.

Remove older keys and regenerate sshd hostkeys in luks mounted partition.

(/home/root/tep_luks_dev is our luks mount directory)

1. rm

a. /home/root/tep_luks_dev/ssh_host_rsa_key

b. /home/root/tep_luks_dev/ssh_host_ecdsa_key

c. /home/root/tep_luks_dev/ssh_host_ed25519_key

2. systemctl restart sshdgenkeys.service

Following NVIndex used for the sealed luks passphrase:

luks_passphrase_handle=0x8100_A001

Debugging LUKS Failure –

1. Re-use a partition for repeat testing for LUKS enablement

a. If cryptsetup detects presence of LUKS header in the beginning of a partition,

it will not setup LUKS again. It checks using below command:

i. cryptsetup isLuks /dev/sda3 && echo $? (If 0, luks header is

present)

b. To remove this Luks header, execute below command on the USB from a

Linux machine. This will wipe out LUKS header:
i. dd if=/dev/zero of=/dev/<luks_parition_id> bs=100M count=1

Trusted VM User Guide Page 25

 Document Number:

Intel Confidential

3.4 TrustAgent configuration.

Platform Integrity in TEP is enabled by the implementation of the Chain of Trust and Remote

Attestation. This use case is for foundational security. Attestation refers to the process of

authenticating and attesting to the state of a remote platform and its operating system.

TEP OS uses the iSecL framework for remote attestation use cases.

3.4.1 Attestation components

Attestation usecases requires the following to be setup,

• Attestation Server a.k.a. iSecL control plane

• TEP Admin infrastructure setup

• Trustagent component integrated with TEP OS.

Below is the picture for attestation components for trusted VM. Same components hold good

for TEP container.

 IA Platform

 ACRN

HW TPM/
PTT

Trusted VM

Tagent bin

Nats Client

TPM Stack

iSecL Control Plane

 HVS Service

TEP Admin
Infrastrure

Postman scripts/
Curl scripts

AAS service CMS Service

Nats
Server

Persistant TLS

Trust Report

Global Admin
Token

Redhat/Ubuntu HostAdmin Machine

IA
Platform

Persistant TLS

Attestation Usecase

Database

Encrypted
Drive

IA
Platform

3.4.2 TEP Trustagent

Trust Agent resides on TEP trusted VM/container and enables both remote attestation and

the extended chain of trust capabilities.

• It provides host specific information.

• It provides secure attestation quotes.

• Allows secure attestation quotes to be sent to the Verification Service

Trusted VM User Guide Page 26

 Document Number:

Intel Confidential

TrustAgent Setup configuration:

Following are the steps for configuring the trustagent answer file and its update process.

• Create an Trustagent answer file trustagent.env

• Follow section 4.2.6, for getting Bearer token details.

• Update trustagent.env to TEP OS,

o Copy the trustagent.env to update_config/home/update/upload/mnt in TEP

update package.

o Using steps mentioned at section 3.2 update TEP user config blob and reboot

the TEP trsutedVM/TEP Container. Create updated 'tep_user_config_data.bin'.

• Set system time which aligns to TEP attestation server and save using hwclock.

• Boot TGL platform to TEP OS

o Init service will initially invoke tep_ta_config_update service which will verify

and decrypt 'tep_user_config_data.bin' and update /home/update/upload/mnt

folder with all the necessary files for trustagent.env execution.

o Init service will invoke to setup luks initialization & decrypt the storage drive.

o Init service will invoke tep_ta_setup.sh for trust agent provision and starting

the tagent. Tagent provision is one time step.

▪ Following would be created as part of trustagent provision.

• /home/root/tep_luks_dev/trustagent - Stores the keys, certs

and configuration files for trustagent

• /home/root/tep_luks_dev/log/trustagent – Stores the

trustagent logs.

• Note: This location must be configured to Luks drive.

o For subsequent boots, Trustagent service will check whether tagent is

provisioned and it would start tagent for next boot.

• Trust agent status checks

o Check TA status. "tagent status". Tagent should be active.

TA_TLS_CERT_CN=Trust Agent TLS Certificate

HVS_URL=https://<Ip address or hostname of HVS>:8443/hvs/v2
AAS_API_URL=https://<Ip address or hostname of AAS>:8444/aas/v1

CMS_BASE_URL=https://<Ip address or hostname of CMS>:8445/cms/v1

SAN_LIST=<Comma-separated list of IP addresses and hostnames for the TAgent matching the SAN list

specified in the populate-users script; may include wildcards>

CMS_TLS_CERT_SHA384=<CMS TLS Digest>

BEARER_TOKEN=<CUSTOM CLAIM TOKEN>

TPM_OWNER_SECRET=<KEEP IT EMPTY>

TA_SERVICE_MODE=outbound

NATS_SERVERS=< nats-server-ip>:4222

#unique HOST ID

TA_HOST_ID=< Any unique identifier for the host>

Trusted VM User Guide Page 27

 Document Number:

Intel Confidential

o Check NATS server connection is established with server
▪ netstat -t

Trusted VM User Guide Page 28

 Document Number:

Intel Confidential

4 Attestation Admin Tasks

4.1 Intel-Secl Control Plane

iSecL control plane is the server for attesting the platform integrity. Following are the

components required for foundational security.

• Postgres database

• Certificate Management library component

• Authentication and Authorization components

• Host verification service

• Nats Server configuration

It recommended to follow iSecl github documentation & product guides for building their

control plane. Here are the details about the intel-isecl.

Git repo: https://github.com/intel-secl/intel-secl/tree/v4.0.0

Documentation & Product user Guides:

https://github.com/intel-secl/docs/tree/v4.0/develop

Build Setup:

https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-

guides/Foundational%20&%20Workload%20Security.md

Deployment of iSecl control plane for foundational security can be done various methods,

• Bare metal method and

• Using Kubernetes

Here are the details of components required for deployment using bare metal method.

Follow the intel-isecl product guide for creating answer files and deployment instructions.

Component Binary/Script

Postgresql 11.0 Postgresql 11.0 – available for Redhat/Linux distributions

create_db.sh – creates users for aas & hvs database. Available

from build of control-plane server

iseclpgdb.env – DB env file

CMS cms-v4.0.0.bin - installer for Certificate management system.

Available from build of control-plane server

https://github.com/intel-secl/intel-secl/tree/v4.0.0
https://github.com/intel-secl/docs/tree/v4.0/develop
https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-guides/Foundational%20&%20Workload%20Security.md
https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-guides/Foundational%20&%20Workload%20Security.md

Trusted VM User Guide Page 29

 Document Number:

Intel Confidential

cms.env - Create answer file for CMS installation

AAS authservice-v4.0.0.bin - Installer for Auth Service system.

Available from build of control-plane server

authservice.env - Create answer file for AAS installation

Populate users populate-users.sh – Creates the users and tokens required for

installation

populate-users.env - Create answer file for creating required users

HVS hvs-v4.0.0.bin – Installer for Verification system. Available from

build of control-plane server

hvs.env - Create answer file for HVS installation

Nats Server nats-server – Install NATS distribution provided.

download-tls-certs.sh - available form build of control-plane server

at intel-secl/tools/

4.2 TEP Admin attestation infrastructure

TEP admin have the following tasks for setting up the attestation usecases.

• Get global admin token using the userid and password

• Creation of TEP device flavors,

o Post flavor group templates - create a flavor template for TEP project and

post to HVS.

o Post flavor group - create a flavor groups required and post to HVS.

o Boot a golden host with Trust agent provisioned. Import flavors from golden

host.

• Host registration and generation of reports

o Register hosts required. Use the host names TA_HOST_ID used in with

provisioning Trustagent on TEP devices.

• Here are the various report generation options,

o Create Trust report - use the TA_HOST_ID. This creates trust report speaking

to respective TEP devices

o List Reports - This generates reports for all available devices regsited

o SAML Report

o All Hosts - Provides status of all TEP devices connected.

• Creating trustagent.env required for TEP device trustagent provisioning.

4.2.1 Postman scripts

Intel-isecl provides post man scripts and API collection's for iSecL control plane to be used

in postman environment. Postman collection would provide majority of the functionality.

Admin user can customize or add these scripts as per the usecase requirements.

Trusted VM User Guide Page 30

 Document Number:

Intel Confidential

https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-

guides/Foundational%20&%20Workload%20Security.md#5-usecase-workflows-api-

collections

4.2.2 Admin Token

The Global Admin user account has all roles for all services. This is a default administrator

account that can be used to perform any task, including creating any other users. In

general, this account is useful for POC installations, but in production it should be used only

to create user accounts with more restrictive roles. The administrator credentials should be

protected and not shared.

Use below as body for postman scripts in getting the global admin token,

POST https://{{isecl-server}}:8444/aas/v1/token

{

 "username": <admin-user-id>,

 "password": <admin-password>

}

 4.2.3 Flavor configuration

A Flavor is a standardized set of expectations that determines what platform measurements

will be considered “trusted.” Following are the configurations required for TEP,

a. Flavor templates

b. Flavor Groups

c. Flavor import

Wiki for flavor configuration - https://github.com/intel-

secl/docs/blob/v4.0/develop/product-

guides/Foundational%20&%20Workload%20Security.md#flavor-management

Flavor templates:

Flavor Templates are conditional rules that apply to a Flavor part cumulatively based on

defined conditions. Here is the sample flavor templates.

Post the template mentioned below to https://{{isecl-server}}:8443/hvs/v2/flavor-templates and this

would generate id. Save the id generated.

 {

 "flavorgroup_names": null,

 "flavor_template": {

 "label": "default-tep",

 "condition": [

 "//host_info/os_name//*[text()='meta-intel-ese Reference Distro']",

 "//host_info/hardware_features/TPM/meta/tpm_version//*[text()='2.0']",

https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-guides/Foundational%20&%20Workload%20Security.md#5-usecase-workflows-api-collections
https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-guides/Foundational%20&%20Workload%20Security.md#5-usecase-workflows-api-collections
https://github.com/intel-secl/docs/blob/v4.0/develop/quick-start-guides/Foundational%20&%20Workload%20Security.md#5-usecase-workflows-api-collections
https://github.com/intel-secl/docs/blob/v4.0/develop/product-guides/Foundational%20&%20Workload%20Security.md#flavor-management
https://github.com/intel-secl/docs/blob/v4.0/develop/product-guides/Foundational%20&%20Workload%20Security.md#flavor-management
https://github.com/intel-secl/docs/blob/v4.0/develop/product-guides/Foundational%20&%20Workload%20Security.md#flavor-management

Trusted VM User Guide Page 31

 Document Number:

Intel Confidential

 "//host_info/hardware_features/UEFI/enabled//*[text()!='true'] or //host_info/hardware_feature

s/UEFI/meta/secure_boot_enabled//*[text()!='true']"

],

 "flavor_parts": {

 "PLATFORM": {

 "meta": {

 "tpm_version": "2.0",

 "vendor": "Linux"

 },

 "pcr_rules": [

 {

 "pcr": {

 "index": 0,

 "bank": [

 "SHA384",

 "SHA256"

]

 },

 "pcr_matches": true

 },

 {

 "pcr": {

 "index": 7,

 "bank": [

 "SHA384",

 "SHA256"

]

 },

 "pcr_matches": true,

 "eventlog_equals": {}

 }

]

 },

 "OS": {

 "meta": {

 "tpm_version": "2.0",

 "vendor": "Linux"

 },

 "pcr_rules": [

 {

 "pcr": {

 "index": 8,

 "bank": [

 "SHA384",

 "SHA256"

]

 },

Trusted VM User Guide Page 32

 Document Number:

Intel Confidential

 "pcr_matches": true

 },

 {

 "pcr": {

 "index": 9,

 "bank": [

 "SHA384",

 "SHA256"

]

 },

 "pcr_matches": true,

 "eventlog_includes": [

 "/acrn.bin",

 "/bzImage-trustedVM",

 "/bzImage",

 "/ACPI_VM0.bin"

]

 }

]

 }

 }

 }

 }

Flavor Groups:

A Flavor Group represents a set of rules to satisfy for a set of flavors to be matched to a

host for attestation. TEP supports flavor groups consisting Platform & OS flavor types.

POST https://{{isecl-server}}:8443/mtwilson/v2/flavorgroups

Here is the sample flavor group, use the id generated while posting flavor templates while

creating flavor groups.

 {

 "name": "tep_2.2",

 "flavorTemplateIds": ["34cadbff-6c83-4f41-ad5b-97fe052397dc"],

 "flavor_match_policy_collection": {

 "flavor_match_policies": [

 {

 "flavor_part": "PLATFORM",

 "match_policy": {

 "match_type": "ANY_OF",

 "required": "REQUIRED"

 }

 },

Trusted VM User Guide Page 33

 Document Number:

Intel Confidential

 {

 "flavor_part": "OS",

 "match_policy": {

 "match_type": "ANY_OF",

 "required": "REQUIRED"

 }

 }

]

 }

 }

Import Flavors:

Flavor creation is the process of adding one or more sets of acceptable measurements to

the Verification Service database. These measurements correspond to specific system

components and are used as the basis of comparison to generate trust attestations.

POST https://{{isecl-server}}:8443/mtwilson/v2/flavors

{

"connection_string": "intel:nats://<TA_HOST_ID>",

"partial_flavor_types": ["PLATFORM", "OS"],

"flavorgroup_names" : [<FLAVOR_GROUP_NAME>]

}

4.2.4 Host Registration

Registration creates a host record with connectivity details and other host information in the

Verification Service database. This host record will be used by the Verification Service to

retrieve TPM attestation quotes from the Trust Agent to generate an attestation report.

POST https://{{isecl-server}}:8443/mtwilson/v2/hosts

{

 "host_name": "<TA_HOST_ID>",

 "connection_string": "intel:nats://<TA_HOST_ID>",

 "flavorgroup_names" : [<FLAVOR_GROUP_NAME>]

}

Trusted VM User Guide Page 34

 Document Number:

Intel Confidential

4.2.5 Report Creation

There are various reports can retrieve from HVS using the postman scripts.

• Attestation Reports

• Saml Reports

• Host State

Report generation details are captured in intel-secl product guide at

https://github.com/intel-secl/docs/blob/master/product-

guides/Foundational%20&%20Workload%20Security.md#attestation-reporting

4.2.6 Trustagent Env Creation

Trustagent.env is the environment file used when Trustagent is provisioned on TEP device.

Here are the details for fields in this file

Fields Description

TA_TLS_CERT_CN
Sets the value for Common Name in the TA TLS certificate. Defaults to
"Trust Agent TLS Certificate".

HVS_URL Host Verification service URL

Ex: https://<Verification Service IP or Hostname>:8443/hvs/v2

AAS_API_URL
Auth Service URL

https://<AAS IP or Hostname>:8444/aas/v1

CMS_BASE_URL Certificate Management URL
https://<CMS IP or Hostname>:8445/cms/v1

SAN_LIST

Comma-separated list of IP addresses and hostnames for the TAGENT
matching the SAN list specified in the populate-users script; may include

wildcards

CMS_TLS_CERT_SHA384
sha384 of CMS TLS certificate. Generated with CMS installation of
control plane.

BEAERER_TOKEN Trust agent provision token. Generated using Custom claim token.

TPM_OWNER_SECRET Empty. TEP OS do not use owner password.

TA_SERVICE_MODE Outbound. This means a persistent connection will be established from
TEP device to Nats Serve. HVS would communicate with TEP device
through this channel.

NATS_SERVERS Nats Server IP

< nats-server-ip>:4222

TA_HOST_ID Unique Host Id. Same Id have to be used when admin registers the TEP
device with HVS.

BEARER TOKEN:

This is a token to authorize the TEP device while performing the TrustAgent provisioning.

Intel-secl supports install admin token and custom claim token to do provisioning.

https://github.com/intel-secl/docs/blob/master/product-guides/Foundational%20&%20Workload%20Security.md#attestation-reporting
https://github.com/intel-secl/docs/blob/master/product-guides/Foundational%20&%20Workload%20Security.md#attestation-reporting

Trusted VM User Guide Page 35

 Document Number:

Intel Confidential

Its recommended to use Custom claim token for TA provision which would have only limited

permissions for performing the provision steps as download-ca-cert, download privacy ca,

EK & AIK provision.

Intel-secl product guide provides steps for “generating Custom Claim token using AAS API”.

Fields required while getting CC Token

• CCC_ADMIN_USERNAME – Configured in populateuser.sh in control plane

• CCC_ADMIN_PASSWORD – Configured in populateuser.sh in control plane

• CUSTOM_CLAIMS_TOKEN_VALIDITY_SECS – Duration of token validity.

Trusted VM User Guide Page 36

 Document Number:

Intel Confidential

5 Image Installations.

This section will give a brief about how to install ACRN hypervisor profile and bare-metal

container images which are built by following build instructions in section 1 above.

4.1 Bring-up Trusted VM as pre-launch VM on

Target (ACRN-hybrid configuration):

4.1.1 Dependencies:

a. Dedicated storage device for pre-launch OS. Only dedicated PCI based

storage device can be used as pass through in ACRN.

b. For this release, USB storage is used (use the correct port for USB connection

so pass-through works). This pass-through information needs to change in

acrn build config. Following default USB PCI device on TGL-U rvp platform.

c. The storage which will be dedicated to TEP pre-launched vm shall have three

primary partitions.

i. <Partition1> for PKCS11 use cases.

1. Mounted at /home/root/tmp/

ii. <Partition2> for update user’s upload mount point.

1. Mounted at /home/update/upload/mnt/

iii. <Partition3> for LUKS encrypted partition.

1. Mounted at /home/root/tep_luks_dev/

d. For development environment we are using serial console for controlling and

launching of VMs. For production when serial is not enabled acrn could be set-

up for auto-launch of trusted-os as pre-launch.

e. PTT/dTPM need to be enabled in BIOS. Make sure that you are using BIOS/FW

with PTT enable.

Trusted VM User Guide Page 37

 Document Number:

Intel Confidential

f. TPM is used for cryptographic key store, make sure that user keys are stored in

TPM as mentioned in device provisioning steps.

g. For Network access dedicated network interface need to be pass-through to

pre-launch VM. Our default configuration uses USB based NIC on above

mentioned USB passthrough root device.

4.1.2 Installation and setup of TEP prelaunch VM:

1. Flash the image "acrn-image-minimal-intel-corei7-64.wic" which is

generated on build host onto target bootable media. NVME is default bootable.

This can be performed using an image installer USB or dd from known

alternative Linux os environment (preferably linux booting from USB media).

2. dd if=acrn-image-minimal-intel-corei7-64.wic of=/dev/<nvme>

3. Boot using the option "ACRN(Yocto) in grub menu.

4. On serial console ACRN hypervisor shell will come up.

5. Run vm_list in ACRN shell. VMs currently present will show.

6. Command "vm_console 0" takes you to pre-launch VM console. To comeback

to ACRN shell press "Ctrl+Space".

7. To go to service OS console do "vm_console 1". Check on acrn shell as follow

to bring up trusted VM console.

4.2 Bare metal host installation on target and

configuring TEP docker container:

To install SELinux based yocto wic image you shall have following pre-requisites.

4.2.1 Pre-Requisites:

1. TGL-U board with following accessories.

• nvme drive

• alternative Linux OS for updating TEP related images, preferably installed on

USB drive and attached to TGL board.

• USB network card.

Trusted VM User Guide Page 38

 Document Number:

Intel Confidential

4.2.2 Installation and setup of TEP container:

Follow following instructions to bring-up SELinux based yocto host as bare metal OS
for TEP docker containers.

Installation:

• Boot alternative Linux OS from USB media.

• Copy SELinux enabled yocto image (core-image-selinux-intel-corei7-

64.wic) from your build machine to a above mentioned USB booted OS or
other media and attach media to TGL board.

• $dd if=<path of core-image-selinux-intel-corei7-64.wic > of= /dev/nvme0n1

status=progress

• Reboot and select NVME from boot device from UEFI.

• Do ssh setup for accessing TPM simultaneously from container and host.

• Generate ssh key pair using ssh-keygen tool

• Create ssh keys and authorized users on host side. These keys will be passed to

TEP container to perform ssh to host.

• ssh-keygen

• cd /home/root/.ssh

• cat id_rsa.pub >> authorized_keys

TEP docker container setup:

Once bare metal host operating system is up and running after installation. We can

install and setup TEP docker container as below.

1. Macvlan Network Creation:

• Pre-requisites:

• Get the subnet, gateway details, ethernet interface

• Create an macvlan network for container network access

• $ docker network create -d macvlan --subnet=10.34.130.0/24 --

gateway=10.34.130.1 -o parent=enp0s20f0u1 my-macvlan-net

• Check for macvlan with command

$ docker network ls

 my-macvlan-net should be visible in network list.

Trusted VM User Guide Page 39

 Document Number:

Intel Confidential

2. Create an network file with interface to be used for Host macvlan bridge
(only first boot on SELinux host)

• For example, “echo enp0s20f0u1 >> /usr/bin/network_container.txt”

3. Run the docker setup for TEP container

• $ docker import core-image-trusted-os-intel-corei7-64.tar.bz2
trusted_container:latest

• $ /usr/bin/docker_setup.sh 3

• docker_setup.sh creates a host macvlan bridge interface mac0 interface and

assign dynamic ip.

• Releases the host network interface ip. One can use mac0 macvlan interface.

4. TEP OS container execution

• $ docker exec -it trusted_container /bin/sh

• docker container shell will be entered.

• Check the ip assigned to TEP OS container

5. SFTP operation and commit: First time boot only

• From Admin machine, perform the sftp operation for config blob
update.

• do device provisioning, follows step – Section 3.1

• Exit container

• Commit the container for changes done.

• $ docker commit trusted_container trusted_container:latest

• $ docker stop trusted_container

6. Relaunch container

• $ /usr/bin/docker_setup.sh 3

• Enter container shell

o $ docker exec -it trusted_container /bin/sh

• Check for Luks and trustagent

• For trust agent you should see the logs “tagent start successful”

o There is trustagent.env required as part of config update.

7. For subsequent SE Linux image boots

• TEP OS Container should be launched automatically.

• Luks and tagent should be started automatically.

Trusted VM User Guide Page 40

 Document Number:

Intel Confidential

6 API Interface and Sample

applications

6.1 PKCS11 Client and Daemon

Trusted VM consist of standard concept of RPC Server and Client. In order to

provide a homogenous application interface to ‘tpm2 pkcs11 module’ from guest

VM to Trusted VM. Server-side listener application is called

‘pkcs11_server_daemon’ which will respond on the pkcs11 request from guest

VMs. Client-side example application is compiled to ‘demo_pkcs11_app’. This

demo application provides uses of tpm2 pkcs11 APIs.

Server-Side daemon ‘pkcs11_server_daemon’ is spawned by Systemd and shall

link shared libs that encapsulate the RPC server implementation.

On Guest OS, user applications shall need to link with just one library

‘erpc_client_wrapper.so’ (part of deliverables), which shall expose the required

pkcs11.h interface, in order to access PKCS11 APIs. This library implements the

RPC client side internally.

In the current release multiple apps can talk to trusted VM. This can be done

over multiple TTY ports (limited to max 2 at this point of time), and multiple

PKCS11 apps can make use of same TTY port, they shall be in a waited

Semaphore queue.

6.2 Features supported in this release

1. Provides tpm2_pkcs11 stack computing infrastructure integrated into the

ECS stack in hypervisor where different VM’s are running.

2. Builds core-image-sec-os and launches in pre-launch mode

3. Builds a RPC interface library in guest VM.

Trusted VM User Guide Page 41

 Document Number:

Intel Confidential

4. Following object types are supported.

a. RSA Support.

b. AES Support.

c. RNG Support.

d. Object Management support.

5. Following PKCS11 APIs are now supported with this release.

S.No PKCS11 API Name S.No PKCS11 API Name

 1 C_Initialize 26 C_DecryptUpdate

2 C_Finalize 27 C_DecryptFinal

3 C_Getinfo 28 C_FindObjectsInit

4 C_InitToken 29 C_FindObjects

5 C_GetTokenInfo 30 C_FindObjectsFinal

6 C_GetSlotList 31 C_SignUpdate

7 C_GetMechanismInfo 32 C_SignFinal

8 C_OpenSession 33 C_VerifyUpdate

9 C_Login 34 C_VerifyFinal

10 C_InitPIN 35 C_GetFunctionList

11 C_Logout 36 C_DestroyObject

12 C_CloseSession 37 C_CreateObject

13 C_GenerateKeyPair 38 C_GetSessionInfo

14 C_GetAttributeValue 39 C_SetPIN

15 C_SignInit 40 C_CloseAllSessions

16 C_Sign 41 C_GetMechanismList

Trusted VM User Guide Page 42

 Document Number:

Intel Confidential

6. Establishes RPC like interface (over UART) communication TrustedVM and

GuesVMs. The nature of VMs can be any, depends on ARCN configuration.

7. Supports multiple PKCS11 apps talking to TrustedVM

a. 6 TTY ports ttyS4 to ttyS9 available.

b. More than 1 app can access same TTY port.

8. For PKCS11 Objects:

a) One pre-defined Token has been initialized in the TrustedVM at the time

of boot. (This operation typically will be performed at platform

manufacturing time. we are simulating it here with pre-defined token)

b) Sample AES Key is provisioned into TPM by TrustedVM at boot time.

6.3 On Trusted VM side

The ‘ipc-pkcs11.target’ systemd service is launched at boot time. This service

will initialize TPM stack and run server-daemon.

In summary there is no need to run anything on TrustedVM side, its ready to

accept the PKCS11 calls from Guest OS app.

17 C_VerifyInit 42 C_DigestInit

18 C_Verify 43 C_Digest

19 C_GenerateRandom 44 C_DigestUpdate

20 C_EncryptInit 45 C_DigestFinal

21 C_Encrypt 46 C_SeedRandom

22 C_EncryptUpdate End of list.

23 C_EncryptFinal

24 C_DecryptInit

25 C_Decrypt

Trusted VM User Guide Page 43

 Document Number:

Intel Confidential

Optional step for sanity:

Following command could be used to check status of erpc-pkcs11 service at Sec-

os console. This service launches ‘pkcs11_server_daemon’ on TrustedVM.

$ systemctl status ipc-pkcs11.target

Note: The default root password on Trusted OS is 123456*18

Recommendation: End user should change root password as per their requirement.

6.4 On Guest-OS side

On Guest-OS which could be pre or post launch VM. Make sure that you have client

binaries and libraries compiled. A sample yocto recipe (ipc-p11-client.bb) is given

at which used following code repository, this recipe could be included in

IAMGE_INSTALL_append in yocto based user VM.

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-

ipc-stack.git

for non-yocto and Linux based guest VMs, we could use auto-tool based compilation

methods.

The source code for client is auto-tools based and could be compiled on any

compatible Linux based system having auto tool support. Source code could be

found from above shared location.

 use following instructions to generate client side library and sample app

$ git clone

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secur

e-computing/tep-ipc-stack.git

$ git checkout <release commit/tag>

$ cd tep-ipc-stack

$ autogen.sh

$./configure --enable-client --enable-debug

https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-tep-ipc/ipc-p11-client/ipc-p11-client.bb
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-ipc-stack.git
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-ipc-stack.git
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-ipc-stack.git
https://gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/tep-ipc-stack.git

Trusted VM User Guide Page 44

 Document Number:

Intel Confidential

$ make

Above commands will create:

1) libpkcs11_client_wrapper.so library

2) demo_pkcs11_app binary

In similar fashion more user applications can be built and run.

Refer Readme, makefile.am and configure.ac files for more details.

6.4.1 Running PKCS11 apps on Guest OS:

Note: There is currently an ACRN limitation for TTY ports.

1) A maximum of 6 UARTs can be enumerated per VM.

This can be configured all to one VM or split across other post launch VMs
needing the TEP as a service.

2) These vUARTS ports in the ACRN 2.3 is exposed as a PCIe device now. Due to
which we need the following 2 KCONFIG in the Post launch VM's Kernel.

CONFIG_SERIAL_8250_NR_UARTS=32

CONFIG_SERIAL_8250_RUNTIME_UARTS=32

6.4.1.1 Running the apps:

The client apps can make use of UART ports starting from ttyS4 to ttyS9 (total of

6) to talk to the Sec-OS. Each of these ports are serialized using a mutex

internally, more than 1 process can use them. To choose the require select we

need to run the following command:

Selecting the right TTY port.

export TEC_COMM_PORT=/dev/ttyS4 <choose S value from 4 onwards, till 9)

Run the demo app or your own app from same shell

tep_test_app

Trusted VM User Guide Page 45

 Document Number:

Intel Confidential

Additional Notes:

• Demo app make use of pre-defined AES objects to demo AES.

• Assumption is that the TrustedVM/Secure OS is launched before the

UserVM/GuestOS that way PKCS11 as a service will be available for guest

OS.

• In case the configuration of the ports is less than 6, then the vUARTs
numbering is handled respectively, always starting from ttyS4

• Multiple apps can use same TTY, they shall be in a semaphore wait.

• Make sure that when we launch guest VM , we set vUART properly for IPC

communication. Following sample example in setting uart.

acrn-dm -A -m $mem_size -s 0:0,hostbridge -s 1:0,lpc \

 -s 5,virtio-console,@stdio:stdio_port \

 -s 6,virtio-hyper_dmabuf \

 -s 3,virtio-blk,/var/lib/machines/images/vm0.wic \

 -s 4,virtio-net,$tap_name \

 -s 7,virtio-rnd \

 -s 10,uart,vuart_idx:1 \

 -s 11,uart,vuart_idx:2 \

 -s 12,uart,vuart_idx:3 \

 -s 13,uart,vuart_idx:4 \

 -s 14,uart,vuart_idx:5 \

 -s 15,uart,vuart_idx:6 \

 --mac_seed $mac_seed \

 -U ${UUID_POST_STANDARD[0]} \

 --ovmf /usr/share/acrn/bios/OVMF.fd \

 $vm_name

Trusted VM User Guide Page 46

 Document Number:

Intel Confidential

7 Intel Recommendations

Followings are intel recommendations for system security.

• Change ‘root’ and ‘update’ user’s password in your yocto build recipe.

o root_user

o update-user

• Keep the Trusted OS, Grub and BIOS stacks up to date with patches

• In production system:

• close all debug interfaces, including JTAG and Serial connections.

• ACRN VMM dump should be disabled.

• BIOS Menu lock down with password.

• Out-Of-band provisioning of UEFI keys should be disabled.

• Recommendation to use MAC system on Service VM to protect the User
PIN for PKCS

• Recommend changing the HOST name during provision to device unique

value, this can be either achieve using customized installer for yocto
image or change at build time by adding/modifying following in your

local.conf and have a system service to make it device unique at boot.

o hostname_pn-base-files = "your_hostname_here"

• We recommend use AES-CTR-256, and ECC-384 crypto algorithms for
better resistant for near future.

• To protect against an adversary with physical access, the system needs to

support TME, VxD with the encrypted disk.

• For TEP docker container it is highly recommended to use SELinux and
container-selinux module to provide proper protections.

https://wiki.ith.intel.com/plugins/servlet/confluence/editinword/1663808732/attachments/ocauth/982fc084-e548-4d32-9da1-f45eaf1869b5/o%09https:/gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/images/core-image-trusted-os.inc
https://wiki.ith.intel.com/plugins/servlet/confluence/editinword/1663808732/attachments/ocauth/982fc084-e548-4d32-9da1-f45eaf1869b5/o%09https:/gitlab.devtools.intel.com/OWR/IoTG/SMIE/Security/secure-computing/meta-tep-trusted-os/-/blob/master/recipes-core/tep-disk-encryption/add-tep-update-user.bb

Trusted VM User Guide Page 47

 Document Number:

Intel Confidential

8 Open Limitations

• VM to VM communication is done in the ACRN configuration XML files. Please

refer ACRN configuration webpage for more details at this link.

• PTT is used as default TPM device, only Infineon dTPM was tested.

• While using AES from PTT for encrypt/decrypt, the maximum size of buffer it
takes is 64K. if you have large file you shall use it in chunks of 64K.

• Following PKCS11 APIs are not supported by TrustedVM.

S.No PKCS11 API Name S.No PKCS11 API Name

 1 C_WaitForSlotEvent 12 C_DigestEncryptUpdate

2 C_GetOperationState 13 C_DecryptDigestUpdate

3 C_SetOperationState 14 C_SignEncryptUpdate

4 C_CopyObject 14 C_DecryptVerifyUpdate

5 C_GetObjectSize 16 C_GenerateKey

6 C_SetAttributeValue 17 C_WrapKey

7 C_DigestKey 18 C_UnwrapKey

8 C_SignRecoverInit 19 C_DeriveKey

9 C_SignRecover 20 C_GetFunctionStatus

10 C_VerifyRecoverInit 21 C_CancelFunction

11 C_VerifyRecover 22 C_GetSlotInfo

https://projectacrn.github.io/1.6.1/developer-guides/hld/vuart-virt-hld.html

